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Abstract -A vector finite-element method for the anafysis of anisotropic

waveguides with off-diagonal elements in the permeability tensor is for-

mulated in terms of all three components of the electric field. In this

approach, spurious, nonphysical solutions do not appear anywhere above
the “air-line.” The application of this finite-element method to waveguides

with an abrupt discontinuity in the permittivity is discussed. In particular,

we discuss how to use the boundary conditions of the electic field at the

interface between two media with different pernsittivities. To show the

validity and usefulness of this formulation, examples are computed for

dielectric-loaded waveguides and ferrite-loaded waveguides.

I. INTRODUCTION

T HE VECTOR finite-element method is widely used

either in an axial-component ( Ez – H,) formulation

[1]-[4] or in a three-component (either the electric field E

or the magnetic field H) formulation [5], [6], which enables

one to compute accurately the mode spectrum of an elec-

tromagnetic waveguide with arbitrary cross section. The

most serious difficult y in using the vector finite-element

analysis is the appearance of spurious, nonphysical solu-

tions [1]–[6]. Hano [7] has presented a three-component

finite-element formulation with rectangular elements. In

his formulation, spurious solutions, except for zero eigen-

values, do not appear, but a diagonal permittivity tensor

and a diagonal permeability tensor are assumed. Recently,

an improved finite-element method with triangular ele-

ments has been formulated for the analysis of anisotropic

dielectric waveguides in terms of all three components of H

[8]-[11]. In dielectric waveguides, the permeability is al-

ways assumed to be that of free space. Therefore, each

component of H is continuous in the whole region and it is

more advantageous to solve for H than for E [12]. In this

improved H-field formulation, no spurious solutions ap-

pear anywhere above the “air-line” corresponding to ~/kO

= 1 in a ~/k. versus k. diagram [11], where lco is the

wavenumber of free space and ~ is the phase constant in

the z-direction. The appearance of spurious solutions is

limited to the region /3/k0 <1 and these solutions are

equivalent to the TE modes of “hollow” waveguides [11].

The H-field formulation is valid for general anisotropic

waveguides with a nondiagonal permittivity tensor. How-
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ever, it is difficult to apply this H-field formulation to

waveguides containing anisotropic media such as ferrites,

because the tensor permeability may vary from material to

material. In such cases, it is advantageous to solve for E

rather than for H.

In this paper, an improved finite-element method with

triangular elements is formulated for the analysis of aniso-

tropic waveguides with a nondiagonal permeability tensor

using all three components of E. In ferrite-loaded wave-

guides, the perti:tivity is assumed to be constant in each

material, but may vary from material to material. At an

abrupt discontinuity in the permittivity, there is an abrupt

change in E. In this work, the application of the E-field

formulation to waveguides with abrupt discontinuities in

the permittivity is discussed in detail. In particular, we

discuss how to use the boundary conditions of E at the

interface between two media with different permittivities.

In this improved E-field formulation, no spurious solutions

appear anywhere above the “air-line.” The appearance of

spurious solutions is limited to the region /3/k0 <1 and

these solutions are equivalent to the TM modes of” hollow”

waveguides. To show the validity and usefulness of this

formulation, examples are computed for dielectric-loaded

waveguides and ferrite-loaded waveguides.

II. FUNCTIONAL FORMULATION

We consider an anisotropic waveguide with a tensor

permeability and a scalar permittivity. With a time depen-

dence of the form exp (jut) being implied, Maxwell’s

equations are

v xE= –jupO[p,]H (1)

v xH= jtic Oe,E (2)

where a is the angular frequency, p ~ and (~ are the

permeability and permittivity of free space, respectively,

[P.] is therelativepermeabilitytensor,[-] denotes a matrix,
and e, is the relative permittivity which is assumed to be

constant in each material.

From (1) into (2),

rived:

v X([#r

he following wave equation is de-

“% XE)–k&,E=O (3)
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where

k;= ~2cOp0. (4)

The functional [12], [13] for (3) is known to be

F= /J( v xE)*. ([pr]-% Xqdfl
a

J.1
– k; ~c,E*.Ed$2 (5)

where fl represents the cross section of the waveguide and

the asterisk denotes complex conjugation. In the finite-ele-

ment analysis using (5), spurious solutions appear scattered

all over the propagation diagram [5]–[12], [14], [15]. These

spurious solutions belong to two distinct categories [11],

[14]. The first one (Sl) can be characterized as follows:

VXE=O v.c,E+O for k: =0. (6)

The second group ( S2) can be characterized as follows:

VXE+O v.c,E+O for k:> O. (7)

In order to eliminate the spurious solutions SI and S2, we

propose the following functional according to the H-field

formulation [8]-[11]:

F= jj( V XE)*@, ]”lV xE)dtl
a

For the functional (8), the first variation ~~ is given by

SF=
//

~E*

.[V:([A-lV XE)-V(VWrE)-k;+] d!il

+E*+X([P,]-lV xE)+v+,E)] dr (9)

where ~ represents the contour of the region fl, n is the

outward unit normal vector to 17, and the term n x

([ P,] ‘lV x E) corresponds to the tangential components
of the magnetic field H on I’. The stationary requirement

8F = O yields

v X([p,]-% xE)–V(V. c,E)–k&,E=O (lOa)

as the Euler equation and

n(v. c,E)=O on perfect electric conductor

(lOb)

nx([p,]-% xE) =0 on perfect magnetic conductor

(1OC)

as natural boundary conditions, since tlE* in (9) is arbi-

trary. The spurious solutions SI and S2 are not included in

(8), but (8) may have other solutions than (3). This new

group (S3), characterized by

VXE=O v.c,E#O for k;> O (11)
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Fig. 1. Interface with an abrupt discontinuity in the permittivity.

obey the following equations:

(V2+k~)Y=0 inregionfl (12b)

+ = O on perfect electric conductor (12c)

d~/13n = O on perfect magnetic conductor

(12d)

where + is the scalar field. The elec;ric field E of (12,)

satisfies the stationary requirement 8F = O, but the diver-

gence of c,E is not zero. Therefore, in the finite-elemerlt

analysis using (8), spurious solutions S3, which are not

included in (5), do appear. The solutions S3 are equivalent

to the TM modes of “hollow” waveguides (replace ~ in

(12b)-(12d) with EZ) and the appearance is limited to the

region ~/kO <1. They do not appear anywhere above the

“air-line.”

III. FINITE-ELEMENT DISCRETIZATION AND

BOUNDARY CONDITIONS

Dividing the cross section !il of the waveguide into a

number of second-order triangular elements as shown in

Fig. 1 and using the finite-element method on (8), we can

write the functional for the whole region Sl in the form

~,={ E};[A]e{E}e (14)

[A]e=[S]e+[U]. -k:[T]e (M)

where {E}. is the electric-field vector corresponding to the

nodal points within each element, the matrices [S],, [T],,

and [U]. for each element are related to the first, second,

and third terms on the right-hand side of (8), respectively,

T, {.}, and {. }~ denote a transpose, a column vector, and

a row vector, respectively, and the summation X, extends

over all different elements. Variation of (13) with respect to

the nodal variables leads to the eigenvalue problem.

In (14), the nodal electric-field ,vector {E}, should be

forced to satisfy the boundary conditions at the interface

between two media with different permittivities. We con-

sider the interface r‘ with an abrupt discontinuity in the

permittivity as shown in Fig. 1, where c1 and c* are

permittivities of the regions 1 and 2, respectively, the unit

vector n normal to I“ makes w angle O with respect to the

x-axis in the xy-plane, and the elements related to r’ are

grouped into two classes: the elements (el) in region 1 and

the elements ( e2) in region 2.
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If the functional for el is used in its originai form (14),

we should modify the functional for e2 in order to satisfy

the boundary conditions of the electric field E on r’. For

ez, the functional (14) can be rewritten as

12= {E};[~12{E}2

{E}2=

{EX}2

{EY}2

{J%}2

{JZ’}2

1{EY/}2

{EZ’}2.

[[~xx12 [~xy]2 [~xz12 [~xx12

[%12 [%12 [412 L4W’12

[~=x12 [~zy]2 [~zz12 [~zx’12

‘A]’= [z4i~12 [A,y]2 [Axzlz [Axtxr]2

L’%], [%], [4.12 [%12

[4(12 [4y]2 [Azz12 [&712

(16a)

(16b)

[%’12

[4’Y’12

[’%12

~AX/Y/12

[’4YYi2

[4/12

Using (17), (16) can be transformed as follows:

S2= {E}:[X]2{E}2 (19a)

{E}2=

{’%}2
{EY}2

{-%}2

{%},

EY’ } 1

Ez’}1

(19b)

[AX,/]2

L4YZ’121
[A=,/]2

[AX/Z/]2

[AY,]2

[AZ/z/]2
I

(16c)

[

[Axx12 [Axy]2 [Axz12 [~xx12 [~.y]2 [Axz,12

1 [’%12 LZX’12 [~YY’12 [4212L4YX]2 [4JY , .

[Azx12 [A,Y]2 [A,,12 [~’x12 [~zy]2 [A,,12

[1]2 =

[&x12 [ZY]2 [Z212 [~xk12 [ZYJ2 [~xz,]i
(19C)

where

where the components of the{ E, }, vector are the values of [lX,X,] z = q~X[AX,X]2+ qXXqXy( [A.,y,] z+ [AY,.,]2)
the electric field E, (i= x, y, z ) at the nodal points within

the element ez except I“, the components of the { Ei, }2 + q~y[AY7Y]2 (20a)

vector are the values of Ei at the nodal points on r’

included in the element e2, and the [AXX]2, [AXY]2,. .0, [~.Yd2 = Q4XY[A-12+ qJLJAxY12
and [AZ/Z] z are the submatrices of the matrix (15) for e2. +q;y[Ayx]2+q.Y9Yy[Ay Y]T (20b)

The tangential components of E and the normal compo-

nent of crE shotdd be continuous at the interface I“. These

boundary conditions can be written as
[LX12= ~xx~xY[Ax’x’12+ 9.=%Y[AYX12

+ q:y[AxY]2+ 9.xy4yy[Ay,]2 (20c)

{EX}2=q XX{ EX}I+~X,{Ey,}, (17a)

{Ey,}2=qxy{Ex,},+~,y{E,}, (17b) [IYY], = qjy[Axx]z+ qxYqYY([AXY]2+ [AYx],)

{J%}Z= {%}, (17C) + ‘#,[Ayy]2 (zOd)

where the components of the {E,, } ~ vector are the values

of E, at the nodal points on I“ included in the element e,, [+.12= ~xx[AJx12+~xY[A,Y123 ~=xYzz’ (’2oe)

and q.., qxy, and qyy are given by
[1<y, z = qxY[AJx’12+qYY[ AJY12 ~=x~zz’ (zOf)

9., = sin2d + (tl/c2)cos20 (18a)

q.y = [(~1/~2)-1] sin6cos0
(18b) [1X,12= q.. [A.’j]2+ q.Y[Ay,]2> ~=x, Y, z, z’ (20g)

qyy = cos28 +(~1/c2)sin20. (18C) [Z,]2 = qxY[Ax,]2+ qYY[AyJ]2, j= x, y, z, -z’. (20h)
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Fig. 2. Dispersion characteristics of a half-filled dielectric waveguide.

By using the original functional (14) for el and ‘the mod-

ified functional (19) for ez, the boundary conditions of the

electric field E at the interface with an abrupt discontinu-

ity in the permittivity are satisfied,

IV. NUMERICAL RESULTS

A. Dielectric-Loaded Waveguides

First, let us consider a rectangular waveguide half-filled

with a dielectric of permittivity c1 (relative permittivity

6r1=cJ60).

We subdivide one half of the cross section into second-

order triangular elements as shown in the insert in Fig. 2,

where C,l =1.5, the plane of symmetry is assumed to be a

perfect magnetic conductor, 36 elements (NE) are used,

and the number of the nodal points ( NP) is 91. Computed

results (solid lines) for the LSMm. and LSE~n modes agree

well with the exact results [16]. Spurious solutions S1 and

S2, which are included in (5), do not appear. Spurious

solutions S3 (dashed lines) corresponding to the solutions

of (12) appear only in the region /l/k. <1. The solutions

S3 with cutoff frequencies koa = fiT and ~v are equiv-

alent to the TMII and TM12 modes of a “hollow” wave-

guide of square cross section, respectively.

One can control the solutions Sq by changing the func-

tional (8) as follows [10], [15]:

Fp= J/( v XE)*@, ]-lV xE)d~
Q

where p is a positive number. If p is set equal to 1, ~P

Fig. 3. p-dependence for the spurious solutions S3,

becomes ~. For (21), (12) is reduced to

(p2V2+k~)+=0 in region 0 (22a)

+=() on perfect electric conductor

(22b)

a+lih = 0 on perfect magnetic conductor.

(22C)

The appearance of the solutions of (22) is limited to the

region ~/kO < l/p and the cutoff frequencies of these

solutions vary in proportion to the value of p.

Fig. 3 shows the p-dependence for the solutions S~ in

the same waveguide as shown in Fig. 2. Solid and dashed

lines in Fig. 3 correspond to the TMII and TM12 modes in

Fig. 2, respectively. When p =2, the solutions S~ appear in

the region ~/k. < 0..5 and the cutoff frequencies of the

solutions corresponding to the TM and TM12 modes in

fFig. 2 become koa = 2077 and 2 5 T, respectively. When

p = 0.5, the solutions SB appear in the region B/k. < 2 and

the cutoff frequencies of the solutions corresponding to the

TMII and TMIZ modes in Fig. 2 become koa = 0.5 fi[7r

and 0.5677, respectively. The p-dependence is very small

for the physical solutions. For larger values of p, however,

the degree of accuracy for the physical solutions becomes

poorer. For smaller values of p, on the other hand, more

spurious solutions appear, because the cutoff frequencies

of these spurious solutions become lower. Hereafter, we use

P = L namely the functional (8).
Fig. 4 shows the dispersion characteristics for the funda-

mental mode of half-filled dielectric waveguides, where tlhe

plane of symmetry is assumed to be a perfect magnetic

conductor. For both C,l =1.5 and 10.0, our results agree

well with the results of the H-field finite-element formula-

tion [11].

In Figs. 2 and 4, the normal direction of the interface

with an abrupt change in the permittivity coincides with

the direction of a coordinate axis.
Next, let us consider a rectangular waveguide with a

diamond-shaped dielectric insert [17], as shown in Fig. 5.

In this waveguide, there are abrupt changes in the permit-

tivity at the interface whose normal direction does not

coincide with the direction of a coordinate axis. Fig. 5

shows the dispersion characteristics for the fundamental
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Fig. 6. Ferrite-loaded waveguide,

TABLE I

DISPERSION CHARACTERISTICS OF FERRITE-LOADED WAVEGUIDES

k ~b

a,=L2 a, =a/4
Bb

Flnite-
Exact

Finite-
element element

Exact

calculation
calculation

calculation
calculation

1 1 1 I

-1 0.78877 0.78876 1.45379 1.45364

Fig. 4. Dispersion characteristics for the fundamental mode of half-filled
dlelectnc waveguides.

o 0.66538 0.66537 1.16095 1.16087

1 0.78877 0.78876 1.39979 1.39966

3 or
●

./– ---
-1

1A
Lx“

[

●

2. 0 Csendes, Sllvester

1
H-field formulation

%
20-

— N~.50> NPZ121

E-field formulation

● NE=50, NP=121
t A NE=128, NP=289

\
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L-- ,-—~
50 100
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Fig. 5. Dispersion characteristics for the fundamental mode of rectangu-
lar waveguides with a diamond-shaped dielectric insert,

mode, where two planes of symmetry are assumed to be

perfect magnetic conductors and one quarter of the cross

section is divided into second-order triangular elements. In

Fig. 5, the results of the H-field formulation with NE= 50

and NP = 121 and the results of the modal approximation

techniques [17] are also presented. For C,l = 1.5, the results

of the E-field formulation with NE= 50 and NP = 121

agree well with those of the H-field formulation. For a

larger value of relative permittivity, C,l = 10.0, the results of

the E-field formulation with NE= 50 and iVP = 121 deviate

from those of the H-field formulation at higher frequen-

cies. However, the E-field finite-element solutions can be

improved by increasing the number of the elements. The

results of the E-field formulation with NE= 128 and NP =

289 are closer to those of the H-field formulation.

The computed results in Figs. 2, 4, and 5 prove the

validity of (19) and (20).

B. Ferrite-Loaded Waveguides

We consider a ferrite-loaded waveguide as shown in Fig.

6. The ferrite material is characterized by the relative

~ermeability tensor
L

[

3.0 0 jO.8

[Prl= o 1.0 0

1

(23)

– jO.8 O 3.0

and a relative perrnittivity of 2.0 [5]. Here, [p,] is indepen-

dent of frequency, although this assumption is not valid for

ferrites in general [5]. Table I shows the dispersion char-

acteristics for the fundamental mode, where a = 2 b, NE =

64, and Np = 153. For both al= a (completely filled) and

al = a/4, agreement between our results and the exact

results [5], [18] is good. In the case of al = a/4, the value

of kOb for ~b = – 1 is different from that for flb =1. This

fact implies that when kO is given, the modes propagating

in this structure (partially filled) in the opposite directions

have different phase constants, namely these modes are

nonreciprocal [18]. The modes propagating in the com-

pletely filled waveguide in the opposite directions, on the

other hand, have the same phase constants, and therefore,

these modes are reciprocal [18].

V. CONCLUSION

The finite-element method was formulated for the analy-

sis of anisotropic waveguides with a nondiagonal permea-

bility tensor in terms of all three components of the electric

field E. In this approach, spurious solutions do not appear

anywhere above the “air-line.” The application of this

E-field formulation to waveguides with an abrupt discon-

tinuity in the permittivity was discussed in detail;
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