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Abstract — A vector finite-element method for the analysis of anisotropic
waveguides with off-diagonal elements in the permeability tensor is for-
mulated in terms of all three components of the electric field. In this
approach, spurious, nonphysical solutions do not appear anywhere above
the “air-line.” The application of this finite-element method to waveguides
with an abrupt discontinuity in the permittivity is discussed. In particular,
we discuss how to use the boundary conditions of the electric field at the
interface between two media with different permittivities. To show the
validity and usefulness of this formulation, examples are computed for
dielectric-loaded waveguides and ferrite-loaded waveguides.

I. INTRODUCTION

HE VECTOR finite-element method is widely used

either in an axial-component (E, — H,) formulation
[1]-[4] or in a three-component (either the electric field E
or the magnetic field H) formulation [5], [6], which enables
one to compute accurately the mode spectrum of an elec-
tromagnetic waveguide with arbitrary cross section. The
most serious difficulty in using the vector finite-element
analysis is the appearance of spurious, nonphysical solu-
tions [1]-[6]. Hano [7] has presented a three-component
finite-element formulation with rectangular elements. In
his formulation, spurious solutions, except for zero eigen-
values, do not appear, but a diagonal permittivity tensor
and a diagonal permeability tensor are assumed. Recently,
an improved finite-element method with triangular ele-
ments has been formulated for the analysis of anisotropic
dielectric waveguides in terms of all three components of H
[8]-{11]. In dielectric waveguides, the permeability is al-
ways assumed to be that of free space. Therefore, each
component of H is continuous in the whole region and it is
more advantageous to solve for H than for E [12]. In this
improved H-field formulation, no spurious solutions ap-
pear anywhere above the “air-line” corresponding to 8/k,
=11in a B/k, versus k, diagram [11], where k, is the
wavenumber of free space and 8 is the phase constant in
the z-direction. The appearance of spurious solutions is
limited to the region B/k,<1 and these solutions are
equivalent to the TE modes of “hollow” waveguides [11].
The H-field formulation is valid for general anisotropic
waveguides with a nondiagonal permittivity tensor. How-
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ever, it is difficult to apply this H-field formulation to
waveguides containing anisotropic media such as ferrites,
because the tensor permeability may vary from material to
material. In such cases, it is advantageous to solve for E
rather than for H.

In this paper, an improved finite-element method with
triangular elements is formulated for the analysis of aniso-
tropic waveguides with a nondiagonal permeability tensor
using all three components of E. In ferrite-loaded wave-
guides, the permittivity is assumed to be constant in each
material, but masl vary from material to material. At an
abrupt discontinuity in the permittivity, there is an abrupt
change in E. In this work, the application of the E-field
formulation to waveguides with abrupt discontinuities in
the permittivity is discussed in detail. In particular, we
discuss how to use the boundary conditions of E at the
interface between two media with different permittivities.
In this improved E-field formulation, no spurious solutions
appear anywhere above the “air-line.” The appearance of
spurious solutions is limited to the region B/k, <1 and
these solutions are equivalent to the TM modes of “hollow”
waveguides. To show the validity and usefulness of this
formulation, examples are computed for dielectric-loaded
waveguides and ferrite-loaded waveguides.

II. FUNCTIONAL FORMULATION

We consider an anisotropic waveguide with a tensor
permeability and a scalar permittivity. With a time depen-
dence of the form exp(jwt) being implied, Maxwell’s
equations are

V X E =~ jopo[p,]H (1)
V X H = jwese E (2)

where « is the angular frequency, u, and ¢, are the
permeability and permittivity of free space, respectively,
{u,]1s the relative permeability tensor, [ -] denotes a matrix,
and e, is the relative permittivity which is assumed to be
constant in each material.

From (1) into (2), the following wave equation is de-
rived:

v X([1,]7'V X E)—kie,E=0 (3)
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where
kg = w’eopo-
The functional [12], [13] for (3) is known to be

F=ffﬂ(v X E)*-([p,]7'v X E) 9

@

- kgfoe,E*-Edsz (5)

where Q represents the cross section of the waveguide and
the asterisk denotes complex conjugation. In the finite-ele-
ment analysis using (5), spurious solutions appear scattered
all over the propagation diagram [5]-[12], [14], [15]. These
spurious solutions belong to two distinct categories [11],
[14]. The first one (S;) can be characterized as follows:

VXE=0 v-¢,E#0 forkj=0.
The second group (S,) can be characterized as follows:
VXE#0 v-¢,E+0 forkl>0. (7

In order to eliminate the spurious solutions S; and S,, we

(6)

propose the following functional according to the H-field .

formulation [8]-[11]:

F= [[(vxE)*(In]7'v x E) a2
—kéf/ﬂe,E*EdQ

+/f9€,‘1(V'€,E)*(V'€,E) dQ. 8

For the functional (8), the first variation 8F is given by

3F=/f965*

|9 x([r, 17V X E)=v(v-¢,E)— kie,E] dg
-erE*-[nX([u,]_lv XE)—n(v-¢,E)|dT (9)

where T' represents the contour of the region @, n is the

outward unit normal vector to I', and the term n X

((p,17'v X E) corresponds to the tangential components

of the magnetic field H on I'. The stationary requirement
8F = 0 yields

v x([g,]7'V XE)-v(v-¢,E)—k,E=0 (10a)

as the Euler equation and

n(v-¢,E)=0 on perfect electric conductor
(10b)

n X ([ ¢, 'y XE ) =0 on perfect magnetic conductor

(10c)

as natural boundary conditions, since 8E* in (9) is arbi-
trary. The spurious solutions S; and S, are not included in
(8), but (8) may have other solutions than (3). This new
group (S;), characterized by :

VXE=0 v-¢E+0 forki>0

(11)

901
" region2
region 1
€
n
z X
Fig. 1. Interface with an abrupt discontinuity in the permittivity.
obey the following equations:
e, E=vy (12a)
(v2+k2)y =0 in region Q (12b)

¥ =0 on perfect electric conductor (12c¢)

d¢ /dn =0 on perfect magnetic conductor
(12d)

where ¢ is the scalar field. The electric field E of (12)
satisfies the stationary requirement 8F =0, but the diver-
gence of € E is not zero. Therefore, in the finite-element
analysis using (8), spurious solutions S;, which are not
included in (5), do appear. The solutions S, are equivalent
to the TM modes of “hollow” waveguides (replace ¢ in
(12b)--(12d) with E,) and the appearance is limited to the
region B/k,<1. They do not appear anywhere above the
“air-line.”

III. FINITE-ELEMENT DISCRETIZATION AND

BouNDARY CONDITIONS

Dividing the cross section Q@ of the waveguide into a
number of second-order triangular elements as shown in
Fig. 1 and using the finite-element method on (8), we can
write the functional for the whole region { in the form

F=YF, (13)

F={(E}/[4].(E}. (14)
[4].=[S].+[U]. - &5[T]. (15)

where { E }, is the electric-field vector corresponding to the
nodal points within each element, the matrices [S],, [T],,
and [U], for each element are related to the first, second,
and third terms on the right-hand side of (8), respectively,
T, {-}, and {~}Tdenote a transpose, a column vector, and
a row vector, respectively, and the summation X, extends
over all different elements. Variation of (13) with respect to
the nodal variables leads to the eigenvalue problem.

In (14), the nodal electric-field vector { £}, should be
forced to satisfy the boundary conditions at the interface
between two media with different permittivities. We con-
sider the interface I with an abrupt discontinuity in the
permittivity as shown in Fig. 1, where ¢, and €, are
permittivities of the regions 1 and 2, respectively, the unit
vector n normal to I makes an angle 8 with respect to the
x-axis in the xy-plane, and the elements related to I'" are
grouped into two classes: the elements (e,) in region 1 and
the elements (e,) in region 2.
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If the functional for e, is used in its original form (14), Using (17), (16) can be transformed as follows:
we should modify the functional for e, in order to satisfy 2 (E\TI (T
the boundary conditions of the electric field E on I". For F={E},[4A1,{E}, (192)

e,, the functional (14) can be rewritten as r{E } _
F2={E}2T[A]2{E}2 (163) {Ey}z
(£, ] o |
- ) {E}, (E.1, (19b)
{ Y}Z
{Ez}z {Ey'}l
{E},= (E.), (16b) (B},
{Ey’}z
_{Ez’}ZJ

4l [4,], [4.h (4. [4.], (4.0

[AyX]z yy}z [AyZ]z [AyX’]z [Ayy’]z [AyZ’]z
sl [4,], [42), 4L (4], (4.1
YT L el el led (4], (40 (16¢)
[Ay’x] 2 [Ay’y] 2 [Ay’Z] 2 [Ay’X’] 2 [Ay’y’] 2 [Ay'Z’] 2

(4] [4,], 4. [42d [4], (4]

(Au] [4,], 4., (4], [4,], [4.h
[Ayx]z [AYY]Z [Aw]z [*‘TyX']z [A_yy’]z [AyZ]z
(- |k [l [l Ll (4], (40
A (4], ALl (A4 (4], [ (19¢)
[Zy’X]z [Iy’y]z [—))2]2 [A_y’X’]z [A_y’y’]z [A_y’Z]z
[4..) [4,], (4] [4.] [4,], (4.1,

where

where the components of the { E, }, vector are the values of [4..],=q%]4,,.],+q A +14.,.,
the electric field E, (i = x, y, z) at the nodal points within 2 e quxy([ i ]2 [ 7 ]2)

the element e, except I, the components of the {E, }, +q3y[Ay'y’]2 (20a)
vector are the values of E, at the nodal points on TV [ _ _

included in the element e,, and the [4,,],, [4,,]," ", [4ey],= /N 7 N P 0 )

and [A4,,,], are the submatrices of the matrix (15) for e,. + qu[Ay/x,]z.{_ quqyy[Ay’y’]2 (20b)

The tangential components of E and the normal compo-
nent of ¢,E should be continiuous at the interface I'". These [ A_y ,x,]z = qquxy[ A+ Tl [ Ay'x’] )

boundary conditions can be written as )
+ 45 [AX’y’] 2t 4x,495y [Ay’y’] 2 (20¢)

{Ex'}2=qxx{Ex'}1+qu{Ey'}l (17a)

{Ey’}2=qu{Ex’}1+qyy{Ey’}1 (17b) [A_y’Y’]2= qJ%y[Ax’x’]l+ quqyy([AX'y’]2+ [Ay’X’]z)

{Ez’}Z = {Ez’ }1 (170) + qyzy [Ay’y’]z (20d)
i el LR RTRPRRON) R R
and gy 4y, and g, are given by [A—jy’]z =ao[A],ta,[4,],  J=xp,2,2 (200)

Gy =sin*8 + (e, /€, ) cos? 8 (18a)
4.y, =[(€1/€,)~1] sinfcosb (18b) [/T’C’J]z=qXX[AX’j]2+qu[Ay’J]2’ J=x,y,2,2" (20g)

@y = 008’8 + (e /¢, ) sin’. (18) (4], = an 40 ]+ a(4,)],  F=x 7.2, (200)
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Fig. 2. Dispersion characteristics of a half-filled dielectric waveguide.

By using the original functional (14) for e; and the mod-
ified functional (19) for e,, the boundary conditions of the’
electric field E at the interface with an abrupt discontinu-
ity in the permittivity are satisfied.

IV. NUMERICAL RESULTS

A. Dielectric- Loaded Waveguides

First, let us consider a rectangular waveguide half-filled
with a dielectric of permittivity ¢, (relative permittivity
€17 €1/ (0).

We subdivide one half of the cross section into second-
order triangular elements as shown in the insert in Fig. 2,
where ¢€,; =1.5, the plane of symmetry is assumed to be a
perfect magnetic conductor, 36 elements (Ng) are used,
and the number of the nodal points (#,) is 91. Computed
results (solid lines) for the LSM,,, and LSE,,, modes agree
well with the exact results [16]. Spurious solutions S; and
S,, which are included in (5), do not appear. Spurious
solutions S, (dashed lines) corresponding to the solutions
of (12) appear only in the region 8/k, <1. The solutions
S, with cutoff frequencies k,a =v2# and V57 are equiv-
alent to the TM;; and TM,;, modes of a “hollow” wave-
guide of square cross section, respectively.

One can control the solutions §; by changing the func-
tional (8) as follows [10], [15]:

F;,=ffﬂ(v x E)*-([p,]7'v X E) d€
—k%/fﬂe,E*-EdQ

+p2ff9e:1(v-e,15)*(v-e,E)dsz (21)

where p is a positive number. If p is set equal to 1, F,

903
Fig. 3. p-dependence for the spurious solutions S;.
becomes F. For (21), (12) is reduced to
(p*v?+k2)y=0  inregion (22a)
=0 on perfect electric conductor

(22b)

ay/an=0 on perfect magnetic conductor.
(22¢)

The appearance of the solutions of (22) is limited to the
region B/k,<1/p and the cutoff frequencies of these
solutions vary'in proportion to the value of p.

Fig. 3 shows the p-dependence for the solutions S, in
the same waveguide as shown in Fig. 2. Solid and dashed
lines in Fig. 3 correspond to the TM;; and TM;, modes in

Fig. 2, respectively. When p = 2, the solutions S; appear in
the region f/ks;<0.5 and the cutoff frequencies of the
solutions corresponding to the TM;; and TM,, modes in
Fig. 2 become k,a = 2V2 7 and 2v5 , respectively. When
p = 0.5, the solutions S, appear in the region 8/k, <2 and
the cutoff frequencies of the solutions corresponding to the
TM,, and TM,, modes in Fig. 2 become kya=0.5V2x
and 0.5Y5 m, respectively. The p-dependence is very small
for the physical solutions. For larger values of p, however,
the degree of accuracy for the physical solutions becomes
poorer. For smaller values of p, on the other hand, more
spurious solutions appear, because the cutoff frequencies
of these spurious solutions become lower. Hereafter, we use
p =1, namely the functional (8).

Fig. 4 shows the dispersion characteristics for the funda-
mental mode of half-filled dielectric waveguides, where the
plane of symmetry is assumed to be a perfect magnetic
conductor. For both ¢, =1.5 and 10.0, our results agree
well with the results of the H-field finite-element formula-
tion [11].

In Figs. 2 and 4, the normal direction of the interface
with an abrupt change in the permittivity coincides with
the direction of a coordinate axis.

Next, let us consider a rectangular waveguide with a
diamond-shaped dielectric insert [17], as shown in Fig. 5.
In this waveguide, there are abrupt changes in the permit-
tivity at the interface whose normal direction does not
coincide with the direction of a coordinate axis. Fig. 5
shows the dispersion characteristics for the fundamental
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Fig. 4. Dispersion characteristics for the fundamental mode of half-filled
dielectric waveguides.

30 —— —
|
o
<
= o Csendes, Silvester
H-field formulation
20- — Ng =50, Np=121

E-field formulation
e Ng=50, Np=i21
a Ng=128, Np=289

\€r1=10 o]

100

Fig. 5. Dispersion characteristics for the fundamental mode of rectangu-

lar waveguides with a diamond-shaped dielectric insert.

mode, where two planes of symmetry are assumed to be
perfect magnetic conductors and one quarter of the cross
section is divided into second-order triangular elements. In
Fig. 5, the results of the H-field formulation with N, =350
and N, =121 and the results of the modal approximation
techniques [17] are also presented. For ¢,, =1.5, the results
of the E-field formulation with N,=50 and N,=121
agree well with those of the H-field formulation. For a
larger value of relative permittivity, €,, =10.0, the results of
the E-field formulation with N, = 50 and N, =121 deviate
from those of the H-field formulation at higher frequen-
ciecs. However, the E-field finite-element solutions can be
improved by increasing the number of the elements. The
results of the E-field formulation with N =128 and N, =
289 are closer to those of the H-field formulation.

The computed results in Figs. 2, 4, and 5 prove the
validity of (19) and (20).
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Fig. 6. Ferrite-loaded waveguide.

TABLE I
Di1SPERSION CHARACTERISTICS OF FERRITE-LOADED WAVEGUIDES

Kob
ay=a ay=a/4
Bb
Finite- Finite-

lement | ciation | STt | e ion

R 0.78877 0.78876 1.45379 1.45364

0 0.66538 0.66537 1.16095 1.16087

1 0.78877 0.78876 1.39979 1 .3996‘6

B. Ferrite- Loaded Waveguides

We consider a ferrite-loaded waveguide as shown in Fig.
6. The ferrite material is characterized by the relative
permeability tensor

3.0 0 j0s8
[o,]=] o 10 0 (23)
—-j08 0 3.0

and a relative permittivity of 2.0 [5]. Here, [u,] is indepen-
dent of frequency, although this assumption is not valid for
ferrites in general [5]. Table I shows the dispersion char-
acteristics for the fundamental mode, where a = 2b, N, =
64, and N, =153. For both 4, =a (completely filled) and
a,=a/4, agreement between our results and the exact
results [5], [18] is good. In the case of a, = a /4, the value
of kyb for §b = —1 is different from that for 8 =1. This
fact implies that when k, is given, the modes propagating
in this structure (partially filled) in the opposite directions
have different phase constants, namely these modes are
nonreciprocal [18]. The modes propagating in the com-
pletely filled waveguide in the opposite directions, on the
other hand, have the same phase constants, and therefore,
these modes are reciprocal [18].

V. CONCLUSION

The finite-element method was formulated for the analy-
sis of anisotropic waveguides with a nondiagonal permea-
bility tensor in terms of all three components of the electric
field E. In this approach, spurious solutions do not appear
anywhere above the “air-line.” The application of this
E-field formulation to waveguides with an abrupt discon-
tinuity in the permittivity was discussed in detail.
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